課程-遷移學(xué)習(xí)物理信息神經(jīng)網(wǎng)絡(luò)用于曲面長時(shí)間對流擴(kuò)散行為模擬
摘要: 物理信息神經(jīng)網(wǎng)絡(luò)(physics-informed neural networks, PINN)將物理先驗(yàn)知識(shí)編碼到神經(jīng)網(wǎng)絡(luò)中,減少了神經(jīng)網(wǎng)絡(luò)對于數(shù)據(jù)量的需求.但是對于時(shí)間相關(guān)偏微分方程的長時(shí)間問題,傳統(tǒng)PINN穩(wěn)定性差,甚至難以求得有效解.針對此問題,該文發(fā)展了一種基于課程學(xué)習(xí)和遷移學(xué)習(xí)的物理信息神經(jīng)網(wǎng)絡(luò)(curriculum-transfer-learning-based ... (共12頁)
開通會(huì)員,享受整站包年服務(wù)